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Abstract  

Background 

Identifying disease causing genes and understanding their molecular mechanisms are 

essential to developing effective therapeutics.  Thus, several computational methods 

have been proposed to prioritize candidate disease genes by integrating different data 

types, including sequence information, biomedical literature, and pathway 

information.  Recently, molecular interaction networks have been incorporated to 

predict disease genes, but most of those methods do not utilize invaluable disease-

specific information available in mRNA expression profiles of patient samples. 

Results 

Through the integration of protein-protein interaction networks and gene expression 

profiles of acute myeloid leukemia (AML) patients, we identified subnetworks of 

interacting proteins dysregulated in AML and characterized known mutation genes 

causally implicated to AML embedded in the subnetworks. The analysis shows that 

the set of extracted subnetworks is a reservoir rich in AML genes reflecting key 

leukemogenic processes such as myeloid differentiation,   

Conclusion 

We showed that the integrative approach both utilizing gene expression profiles and 

molecular networks could identify AML causing genes most of which were not 

detectable with gene expression analysis alone due to their minor changes in mRNA.  
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Background  

Mining disease-causing genes and elucidating their pathogenic molecular mechanisms 

are of great importance for developing effective diagnostics and therapeutics [1-5].  

Along with many genetic and genomic studies aimed at identification of disease genes 

(e.g. linkage analysis, cytogenetic studies, microarray experiments, proteomic 

studies), several computational methods have been proposed to prioritize candidate 

genes based on various information including sequence similarity, literature 

annotation, and molecular pathways [6-11]. Given a set of genes known to be 

involved in disease, these methods typically score similarities between candidate 

genes and known disease genes in terms of various genomic features.  

 

Recently, accumulated knowledge about molecular interaction networks in human 

cells such as protein-protein, and protein-DNA interactions has been utilized to 

predict disease genes [6-8, 10, 12-14].  The previous studies have incorporated 

topological characteristics of known disease genes such as degrees in networks [14], 

the overlap between interaction partners of candidate genes and those of known 

disease genes [6], the probability of candidate genes to participate in the same protein 

complexes with known disease-causing genes [10], or the distribution of distances 

from candidate genes to known disease genes [13].   

 

Despite their successful performance in general, for some specific diseases of our 

interest, such as acute myeloid leukemia (AML), the performance is not satisfactory 

(AUC = 0.55 by Radivojac et al. [13]).  We hypothesized that integrating molecular 

networks with mRNA expression profiles from patients might help delineate disease-

specifically dysregulated molecular subnetworks containing disease-causing mutation 
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genes.  Chuang et al. supported this hypothesis  showing the identified subnetworks 

included significantly enriched known breast cancer mutation genes [15].  Mani et al. 

proposed another method predicting oncogenes in B-cell lymphomas integrating both 

molecular interactions and mRNA expressions [16].   

 

Here, we identified molecular subnetworks dysregulated in AML patients which were 

associated with key leukemogenic processes such as myeloid differentiation. We also 

evaluated the enrichment of known AML-causing mutation genes within the 

subnetworks, and the results show that the subnetworks contain significant fraction of 

known AML genes (mostly non-differentially expressed) embedded among the 

interconnections of differentially expressed genes. In addition, several characteristics 

of AML genes in the subnetworks explored in this study can be utilized to build 

prediction models for unknown AML genes.  

 

Results and Discussion 

Identification of subnetworks perturbed in AML 

The method to find subnetworks of AML is similar to that of our previous work [15], 

and visualized in Figure 1.  We overlaid the gene expression values of each gene on 

its corresponding protein in the protein-protein and protein-DNA interaction network  

and searched for subnetworks whose combined activities across the patients have high 

perturbation scores (PS) starting from each node in a greedy fashion. The gene 

expression profiles used cDNA platforms where each expression value of gene gi in 

patient pj (gij) is the mean log ratio of intensities from Cy5-labeled mRNA of the 

patient and Cy3-labeld reference mRNA. Expression values were normalized for each 

gene across patients to have mean 0 and standard deviation 1 (zij). We took absolute 
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values of expression levels to measure perturbation effect regardless of the direction 

of changes (i.e. up or down). The perturbation score was defined as the mean over 

standard deviation of an activity vector across samples whose activity values are 

averaged gene expression levels of genes participating in each subnetwork Mk and is 

denoted as S(Mk) in Figure 1. Subnetworks with higher mean and smaller variance of 

activity levels are considered more perturbed in AML samples. 

 

AML subnetworks associated with key leukemogenic processes. 

Through the search for sutnebworks perturbed in AML patients, we identified 269 

subnetworks (p<0.05) comprising of 859 genes whose functions are associated with 

AML development processes such as myeloid differentiation, cell signaling of growth 

and survival, cell cycle, cell and tissue remodeling. Within the significant AML 

subnetworks, we found many of already known AML-causing mutation genes. Figure 

2 shows examples of subnetworks containing known AML genes such as JAK2, 

JAK3, PDGFRB, and CREBBP, and their representative biological processes. 

Especially, a severe block in myeloid differentiation is known to be the hallmark of 

AML.  

 

AML subnetworks enriched for known AML causing genes. 

We have evaluated the enrichment of known AML genes in significant subnetworks 

in a systematic way. We compiled 62 genes known to be causally mutated in AML 

from Sanger Cancer Gene Census. 150 out of 269 subnetworks included at least one 

AML gene, and 49 subnetworks included two or more AML genes. As shown in 

Figure 3, subnetworks were much more significantly enriched for AML causing 
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mutation genes than the conventional gene-expression analysis alone without 

considering molecular interactions (p value P = 7.14e-6 vs. P = 0.04). 

 

Characterstics of AML genes in the subnetworks. 

Table 1 lists 18 known AML genes detected in perturbed subnetworks along with the 

number of subnetworks including a designated gene and the magnitude of differential 

expression in its mRNA level (DES) for each gene. JAK3, KIT, EVI1, and CREBBP 

appeared in more than 10 subnetworks while other genes were present in two or 

mostly one subnetwork.  JAK3 with the extremely high frequency (110) has been 

reported to have great biological importance in AML pathogenesis through gain-of-

function JAK3 mutations (e.g. JAK3A572V, JAK3V722I, JAK3P132T) activating 

signal transduction [17].  Mutations in KIT having the second highest frequency (43) 

were also found in more than 30% of patients with de novo AML [18]. The 

appearance frequency of an AML gene in subnetworks is more correlated with the 

magnitude of its DES score (correlation coefficient r = 0.43) than the number of 

interacting partners, the node degree (r = 0.01). 

 

We examined whether AML genes captured in subnetworks have high degrees in the 

network because that property has been used to predict unknown disease genes in 

other diseases previously (Figure 4a). The figure shows that all known AML-causing 

genes (AML) and AML genes captured in subnetworks (AML_Network) have 

significantly more interaction partners than all genes in the network (P = 1.22e-6, and 

P = 2.34e-6, respectively). AML genes found in subnetworks have slightly higher 

degree than AML genes not captured in subnetworks (P = 0.02). The mean and 

median degrees of all genes in the network are 9 and 4, while those of 18 AML genes 
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are 51 and 27. Though this result supports that known AML genes have tendency of 

high network degrees, low degree AML genes such as RPL22, and TRIP11 also 

appeared in the subnetworks. 

 

Finally, we investigated the differential expression of AML genes in mRNA levels 

(Figure 4b). There was no significant difference between each group of genes, and all 

known AML genes and those found in subnetworks except FLT3, and JAK3 did not 

show mRNA level aberrations. This result shows that gene expression alone does not 

provide enough information to predict unknown AML-causing mutation genes. 

However, our integrative approach could capture non-differentially expressed AML 

genes in subnetworks if they were entangled with neighbour proteins whose 

expressions are differentially expressed resulting subnetworks with high perturbation 

scores. 

  

Conclusion 

We have demonstrated that integration of condition-independent molecular networks 

extracted from various types of cells and experiments under different conditions, and 

disease-specific mRNA expression profiles of AML patients enables the dissection of 

pathogenic modules of interacting proteins reflecting key leukemogenic processes. In 

addition, the dissected modules are enriched for AML-causing mutation genes most of 

which are not detectable with gene expression analysis alone due to minor changes in 

their mRNA levels. Identification of subnetworks perturbed in AML patients can 

provide novel molecular hypotheses underlying AML etiology, and investigated 
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characteristics of known AML genes appearing in the subnetworks can be exploited to 

predict unknown AML-causing genes.  

 

Methods 
 

Protein-protein interaction networks.  

We downloaded the PPI network from the PhenoPred website by Radivojac et al. 

[19].  It consists of 41456 physical interactions among 9142 proteins assembled from 

Human Protein Reference Database (HPRD) [20], The Online Predicted Human 

Interaction Database (OPHID) [21], and studies by Rual et al. and Stelzl et al. [22, 

23]. 

 
mRNA expression profiles of AML patients.  

Gene expression profiles of 65 peripheral-blood samples and 54 bone marrow 

specimens from 116 adult patient with AML were downloaded from Gene Expression 

Omnibus (GSE425) whose expression values are log ratios (base 2) of mean 

intensities of patient samples vs. common reference mRNA [24]. Gene identifiers of 

three cDNA microarray platforms (GPL317,318,319) were mapped to gene symbols 

using accompanied gene annotation files from GEO yielding 6987 gene symbols with 

expression levels in at least one of three platforms. 

 

Mutation genes in AML patients. 

We compiled two sets of AML-associated genes: 14 genes downloaded from 

PhenoPred web site originally collected from OMIM [25], Swiss-Prot [26], and 

HPRD [20] by Radivojac et al. (Disease Ontology ID: 9119) [19], and  62 genes 

whose somatic and germline mutations are causally implicated in AML patients 
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downloaded from Sanger Cancer Gene Census [27], and also appearing in our PPI 

network. 

 

Significance evaluation of subnetworks.  

To evaluate the significance of the identified subnetworks, we performed the same 

search procedure over 1000 random trials in which the expression vectors of 

individual genes are randomly permuted in the network. The p value of each real 

subnetwork is calculated as the fraction of random subnetworks having higher PS 

scores than the designated real subnetwork among all random subnetworks. We 

consider subnetworks with the p-value P < 0.05 significant in this work 
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Figures 

Figure 1. Schematic overview of the subnetwork identification. 

Schematic overview of the subnetwork identification. The mRNA expression levels of 

each gene were overlaid on its corresponding protein in the network and subnetworks 

whose combined activities across the patients have high perturbation score were 

searched.  An activity level (akj) for a subnetwork Mk in j
th

 sample was defined as the 

mean expression levels with the square-root of the number of participating genes in 

the denominator. The perturbation score S(Mk) for the subnetwork was then calculated 

as the mean over the standard deviation of the activity levels across patients. 

 

Figure 2. Examples of subnetworks containing known AML mutation 

genes.  

Nodes and links represent human proteins and protein interactions, respectively. The 

color of each node shows the degree of mRNA level change in AML patients. Known 

AML mutation genes are marked with the diamond shape. 

 

Figure 3. The enrichment of AML mutation genes in subnetworks.  

18 out of 62 AML genes (29.03%) were found in 269 subnetworks including 859 

genes, and their enrichment was significant (p-value P = 7.14e-6) through the 

hypergeometric test (the probability of 18 AML genes out of all 62 are found in the 

subnetworks including total 859 genes out of 9142 genes in the whole network). In 

contrast, only two AML genes (FLT3, JAK3) (3.23%) were found among 859 top 

differentially expressed genes in their mRNA levels (P = 0.04) 
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Figure 4. (a) Degrees and (b) mRNA expression changes of AML genes  

Each figure shows node degrees and magnitudes of differential expression (DES) for 

AML-causing mutation genes found in subnetworks (AML_Network), all known 

AML mutation genes (AML), and all genes in the whole network. The bottom and top 

of each box are first and third quartiles, and the band near the middle of the box is the 

median. Whiskers extend to at most 1.5 times the inter-quartile range. Beyond the 

whiskers, all outliers are shown in open circles. The statistical significances for 

differences between two groups of genes (e.g. AML_Network vs. All genes) 

measured by non-parametric Wilcox rank-sum test are denoted below the labels of 

gene groups. 
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Tables 

Table 1  - AML mutation genes in subnetworks 

Genes 
Number of 

Subnetworks 
Degree DES+ 

JAK3* 110 32 2.73 

KIT 43 54 1.97 

EVI1 16 7 -1.27 

CREBBP 14 209 1.5 

EP300 7 216 2.36 

BCR 2 32 1.41 

FLT3** 2 11 3.58 

NSD1 2 6 1.14 

PTPN11 1 109 -1.07 

JAK2 1 87 N/A 

PDGFRB 1 56 -0.33 

NPM1 1 33 -0.37 

RUNX1 1 22 0.68 

GATA2 1 20 1.58 

PICALM 1 8 0.44 

FNBP1 1 7 2.05 

RPL22 1 3 1.08 

TRIP11 1 2 -1.29 

+
DES means the degree of change in its mRNA level for each gene. 

Genes having top 5% and higher absolute PS scores are marked with **, and 

top 10% and higher with *. 
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